Итальянец-иезуит Саккери в 1733 году в своих исследованиях приближался к идеям Лобачевского, то есть готов был отвергнуть постулат Евклида, но не решился этого высказать, а стремился во что бы то ни стало доказать его, и конечно, так же безуспешно.
В конце прошлого столетия в Германии гениальный Гаусс в 1792 году впервые задал себе смелый вопрос: что произойдет с геометрией, если отвергнуть постулат Евклида? Этот вопрос родился, можно сказать, вместе с Лобачевским, который ответил на него созданием своей воображаемой геометрии. Здесь представляется нам решить, возник ли этот вопрос самостоятельно в уме нашего Лобачевского, или его возбудил Бартельс, сообщив даровитому ученику мысль друга своего Гаусса, с которым до самого отъезда в Россию он поддерживал деятельные личные отношения. Некоторые современные русские математики, побуждаемые, вероятно, наилучшими чувствами, стремятся доказать, что мысль Гаусса возникла в уме Лобачевского совершенно самостоятельно. Доказать это невозможно; всем известно письмо Гаусса, относящееся к 1799 году, в котором он говорит: «Можно построить геометрию, для которой не имеет места аксиома о параллельных линиях».
Сошлемся на слова казанского профессора Васильева, доказавшего свое глубокое уважение к заслугам и памяти Лобачевского; говоря о близких отношениях Бартельса с Гауссом, он замечает:
«Нельзя считать поэтому слишком рискованным предположение, что Гаусс делился своими мыслями по вопросу о теории параллельных со своим учителем и другом Бартельсом. Мог ли, с другой стороны, Бартельс не сообщить о смелых взглядах Гаусса по одному из основных вопросов геометрии своему пытливому и талантливому казанскому ученику?» Разумеется, не мог.
Но умаляет ли все это заслуги Лобачевского? Конечно, нет.
Труды Лежандра, о которых мы упоминали, вышли в 1794 году. Они не удовлетворили, но оживили интерес к теории параллельных, и нам известно, что в первое двадцатипятилетие нашего столетия беспрестанно появлялись сочинения, относящиеся к теории параллельных. По словам профессора Васильева, многие из них и до сих пор сохранились в библиотеке Казанского университета и, как достоверно известно, были приобретены самим Лобачевским.
В 1816 году Гаусс оценил следующим образом все эти попытки: «Немного в области математики вопросов, о которых так много писалось бы, как о пробеле в началах геометрии, и все-таки мы должны признаться честно и откровенно, что в сущности мы не ушли за две тысячи лет дальше Евклида. Такое откровенное и прямое сознание более отвечает достоинству науки, чем тщетные желания скрыть пробел…»
Из всего этого мы видим, что в то время, когда Лобачевский вступал на математическое поприще, все было подготовлено к решению вопроса о теории параллельных в том смысле, в каком это было сделано Лобачевским. В 1825 году вышла теория параллельных немецкого математика Тауринуса, в которой упоминается о возможности такой геометрии, в которой постулат Евклида не имеет места. Первое сочинение Лобачевского, относящееся к этому предмету, представлено было физико-математическому факультету в Казани в 1826 году; оно вышло в свет в 1829 году, а в 1832 году появилось собрание трудов венгерских ученых, отца и сына Болиай, по неевклидовой геометрии. Нам известно, что Болиай-отец был другом Гаусса; из этого можно заключить, что ему более чем Лобачевскому были известны мысли Гаусса; между тем, право гражданства получила в Западной Европе геометрия Лобачевского. Первый труд Лобачевского, появившийся на немецком языке, заслужил, как мы сказали, одобрение Гаусса. По поводу его Гаусс писал к Шумахеру: «Вы знаете, что уже пятьдесят четыре года, как я разделяю те же взгляды. Я, собственно, не нашел в сочинении Лобачевского ни одного нового для меня факта; но изложение весьма различно от того, какое я предполагал дать этому предмету. Автор толкует о предмете как знаток, в истинно-геометрическом духе. Я считал себя обязанным обратить ваше внимание на эту книгу „Geometrische Untersuchungen zur Theorie der Parallellinien“, [6], чтение которой непременно принесет вам большое удовольствие». Письмо это написано в Геттингене и относится к 1846 году. Из него, однако, нельзя заключить, чтобы Гаусс не знал и раньше от Бартельса о трудах Лобачевского. Мы скажем более: невозможно допустить, чтобы Бартельс умолчал об успехах своего талантливого ученика.
Из сказанного нами очевидно, что краеугольный камень геометрии Лобачевского – это отрицание постулата Евклида, без которого геометрия около двух тысяч лет казалась немыслимой. Нам известно, как крепко всегда держались люди за наследие веков и сколько отваги требуется от человека, разрушающего вековые заблуждения. Из очерка жизни Лобачевского мы видели, как мало ценили и понимали его современники как ученого. И теперь, через сто лет после его рождения, в обыкновенных образованных людях держится глубокое предубеждение против геометрии Лобачевского, если только им известно о ее существовании. Изложить эту геометрию в популярной форме невозможно, как невозможно объяснить человеку, лишенному слуха, прелести соловьиных трелей. Для того чтобы понять значение этой отвлеченной науки, необходимо уметь отвлеченно мыслить, что дается только долгими занятиями философией и математикой. Имея это в виду, мы о созданной Лобачевским геометрии скажем только то, в чем она заключается, какое ей приписывают значение современные ученые, как и кем она разрабатывалась после Лобачевского и какое эти позднейшие труды имели отношение к трудам самого Лобачевского. Во всем этом читателю, не посвященному в тайны высшей математики, придется верить на слово авторитетам.
Читать дальше