В своих трудах Архимед изучал только силы, которые с точки зрения аристотелевой механики вызывают «естественные» движения. Более того, он сразу упростил задачу, исключив из нее движение. Так появилась статика.
До Архимеда закон рычага рассматривался в сочинении «Механические проблемы», автором которого долгое время считался Аристотель.
В «Механических проблемах», которые составлены в форме вопросов и ответов, содержится описание ряда инструментов и механизмов (рычаг, колодезный журавль с противовесом, клещи, кривошип, полиспаст, зубчатые колеса, рычажные весы) и объяснение их действия на основе «принципа рычага» и правила: «Выигрываем в скорости (пути) — проигрываем в силе».
Однако отсутствие ясности в постановке задач в ряде случаев приводило к совершенно неправильным представлениям. Вот как, например, описывается в «Проблемах» работа корабельного руля: «Почему малый руль, привешенный на корме корабля, имеет столь большую силу?..
Быть может, потому, что руль есть рычаг, а рулевой есть то, что приводит его в действие? Стало быть, место, где он прикреплен к кораблю, становится точкой опоры, руль в целом — рычагом, море — грузом, а рулевой — движущей силой». Действие руля, основанное на силе реакции отталкиваемой им воды, разумеется, нельзя свести к простому рычагу.
Нечетким рассуждениям, содержавшимся в «Механических проблемах», Архимед противопоставил безупречную теорию, построенную по законам геометрии. Архимед сделал в механике то, что греческие геометры сделали в египетской и вавилонской землемерной науке. Вместо полей они рассматривали отрезки плоскостей, вместо межевых границ — бесконечно тонкие и абсолютно прямые (или имеющие строго обусловленную кривизну) линии. И тогда оказалось возможным найти между фигурами соотношения, о которых не подозревала восточная математика, удовлетворявшаяся решением практических задач.
Архимед придал геометрическим фигурам вес, равномерно распределенный по площади или объему. В отличие от автора «Механических проблем» он рассматривает не реальные рычаги или барабаны, а их идеализированные схемы. Это тем более замечательно, что Архимед был и блестящим практиком-конструктором.
Из механических, вернее, механогеометрических сочинений Архимеда до нас дошли только два: «О равновесии плоских фигур» и «Эфод, или послание Эратосфену о механических теоремах». Однако отрывки из его более ранних механических сочинений «О весах» и «О рычагах» сохранились в произведениях ряда авторов. Наиболее важные из них, относящиеся к учению о центре тяжести, имеются в «Механике» александрийского ученого I в. н. э. Герона и в «Математической библиотеке» ученого III в. н. э. (также александрийца) Паппа.
Центр тяжести
Первым открытием Архимеда в механике было введение понятия центра тяжести, т. е. доказательство того, что в любом теле есть единственная точка, в которой можно сосредоточить его вес, не нарушив равновесного состояния.
Герон и Папп приводят со ссылкой на Архимеда доказательство существования центра тяжести. Герон предваряет теорему фразой, относящейся к рассмотрению Архимедом идеализированных «физико-математических» тел (метод абстракции). Герон пишет: «Никто не отрицает, что о наклонении и отклонении в действительности говорят только о телах. Если же мы говорим о плоских или телесных (объемных) фигурах, что некоторая точка является их центром поворота и центром тяжести, то это достаточно разъяснено Архимедом». Эта фраза подтверждает, что замена тел их теоретическими моделями была в науке новшеством, введенным Архимедом.
Архимедовы определение центра тяжести и теорему о его существовании мы приведем в пересказе Паппа.
Определение центра тяжести формулируется так: «…центром тяжести некоторого тела является некоторая расположенная внутри него точка, обладающая тем свойством, что если за нее мысленно подвесить тяжелое тело, то оно останется в покое и сохранит первоначальное положение».
Доказательство существования центра тяжести также основано на мысленном уравновешивании тела. В нем тело мысленно помещают на горизонтальную прямую, являющуюся основанием вертикальной плоскости (рис. 1): «Если какое-нибудь обладающее весом тело положить на прямую CD так, чтобы оно полностью рассекалось продолжением упомянутой плоскости, то оно может иногда занять такое положение, что будет оставаться в покое… Если затем переставить груз так, чтобы он касался прямой CD другой своей частью, то можно при поворачивании дать ему такое положение, что он, будучи отпущен, останется в покое… Если снова вообразить плоскость ABCD продолженной, то она разделит груз на две взаимно уравновешивающиеся части и пересечется с первой плоскостью… Если бы эти плоскости не пересеклись, то те же самые части были бы и уравновешивающимися и неуравновешивающимися, что нелепо».
Читать дальше