Публикации Белградского Математического Института"
Я уже упоминал, что в журнале "Публикации Белградского Математического института" был опубликован французский оригинал лекции Эли Картана, которую он прочел в Белграде в 1939г, Мое знакомство с редакцией этого журнала произошло следующим образом: мне прислала мне на отзыв статью, поступившую в этот журнал. В статье излагалась некоторая система аксиом коевклидова пространства, т.е. пространства, соответствующего евклидову пространству по принципу двойственности проективной геометрии. Автор не знал, что системой аксиом коевклидова пространства может служить любая система аксиом евклидова пространства. Поэтому я дал отрицательный отзыв на эту статью.
Я предположение, что Татьяна Острогорски, которая прислала мне эту статью, русская, и спросил, может ли она переписываться по-русски. Татьяна ответила, что что она владеет русским языком. Позже я узнал, что ее отец - Георгий Александрович Острогорский, был сыном директора Тенишевского училища в С.Петербурге, в котором учились Владимир Набоков и Осип Мандельштам. Острогорский эмигрировал в 1920 г., был студентом в Германии и Франции, стал крупным специалистом по истории Византии и был приглашен в Белград, где основал Институт византологии. Мать Татьяны - гречанка из югославской Македонии.
После моего отзыва на статью мне предложили стать членом редакции журнала. Я опубликовал в этом журнале несколько моих статей, а также статьи С.Л.Певзнера из Комсомольска на Амуре и моей ученицы А.Шабаевой из Салавата.
В 1993 г. в этом журнале была опубликована моя статья "Пространства с особыми фундаментальными группами", в которой я впервые нашел выражения проективных преобразований и движений в октонионных плоскостях и движений в плоскостях над тензорными произведениями, одним из сомножителей которых является алгебра октонионов.
В 1996 г. я опубликовал совместную с М.П.Замаховским статью "Однородные k-симметрические пространства внутреннего типа с простыми вещественными фундаментальными группами и их связи с параболическими пространствами". Под k - симметрическими пространствами имеются в виду обобщения симметрических пространств, в которых инволютивный автоморфизм фундаментальной группы пространства, определяющий геометрию этого пространства, заменяется таким автоморфизмом, к-тая степень которого (к >2) является тождественным преобразованием; k-симметрическое пространство называется пространством внутреннего или внешнего типа, в зависимости от того, является ли определяющий его автоморфизм, внутренним или внешним.
В 1997 г. я опубликовал в этом журнале статью "Геометрические интерпретации некоторых йордановых алгебр" и совместную с Н.Е.Марюковой (Панкиной) статью "Поверхности постоянной кривизны и геометрические интерпретации уравнений Клейна-Гордона, Sin-Гордона и Sh-Гордона". Как известно, первые два из этих уравнений имеют важное значение в физике, а второе из них определяет поверхности постоянной кривизны в 3-мерном евклидовом пространстве. Ш.Ш.Чжэнь доказал, что третье из этих уравнений имеет аналогичный смысл для 3-мерного псевдоевклидова пространства. В нашей работе показывается, что первое уравнение имеет аналогичный смысл для 3-мерного галилеева пространства. В работе изучаются все геометрические интерпретации этих трех уравнений.
В 2000 г. я опубликовал в этом журнале статьи "Шаровые модели эрмитовых пространств" и "Дифферецируемые функции в ассоциативных и альтернативных аллгебрах и гладкие поверхности в проективных пространствах над этими алгебрами".
В 2005 г. в этом журнале была опубликована моя статья "2-мерное алгебраическое многообразие с 27 прямолинейными образующими и 108 трисекантами и его связь с особой простой группой Ли максимальной размерности".
В 2006 г. я опубликовал в этом журнале статью "Углы голоморфии и секционная кривизна эрмитовых эллиптических плоскостей над телами и тензорными произведениями тел".
"Математики, астрономы и другие ученые исламской цивилизации и их труды"
Вернувшись летом 1994 г. из Стамбула, мы с женой вплотную занялись подготовкой английского аналога книги "Maтематики и астрономы мусульманского средневековья и их труды (VIII - XVIII)" (МАМС), изданной в 1983 г. в Москве.
Работа началась с того, что жена напечатала на компьютере английский перевод того материала из МАМС, который она могла сделать самостоятельно: перевод имен ученых, арабских, персидских и турецких названий сочинений с русской транскрипции на транскрипцию, принятую в англоязычной литературе, перевод названий городов, библиотек и профессий ученых, внесение в текст библиотечных шифров рукописей.
Читать дальше