Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра

Здесь есть возможность читать онлайн «Борис Розенфельд - Пространства, времена, симметрии. Воспоминания и мысли геометра» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Пространства, времена, симметрии. Воспоминания и мысли геометра: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Пространства, времена, симметрии. Воспоминания и мысли геометра»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга, название которой подсказано книгой Вейля - это воспоминания и мысли геометра и математика Бориса Абрамовича Розенфельда, который интересовался вопросами истории науки и философии, побывал во многих странах и встречался со многими людьми.
Книга состоит из 18 глав, первые 15 из которых являются воспоминаниями, в последних 3 главах изложены мысли геометра, историка и философа.

Пространства, времена, симметрии. Воспоминания и мысли геометра — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Пространства, времена, симметрии. Воспоминания и мысли геометра», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Платон не любил Демокрита, скупал рукописи его сочинений и сжигал их.

Аристотель

Занимался математикой и Аристотель (384-322 до н.э.) В своей "Физике" Аристотель дал определения непрерывности и бесконечности и сформулировал принцип: "Непрерывная величина не может состоять из неделимых частей, например, линия из точек". Аристотель считал, что непрерывная величина может быть только "геометрическим местом" в котором находятся точки. В "Первой Аналитике" Аристотель разработал теорию силлогизмов, а "Во второй Аналитике"- теорию доказательств.

По мнению Аристотеля мир состоит из трех областей :

подлунного мира - от центра Земли до орбиты Луны, в котором действуют законы обычной физики,

надлунного мира - от орбиты Луны до сферы неподвижных звезд, в котором возможно движение только с постоянной скоростью и по идеальным линиям - прямым и окружнастям,

области за сферой неподвижных звезд, в которой живут боги.

Аристотель называл эти области областью физики, областью математики и областью божественной науки.

В обнаруженном мной в Баку математическом трактате Омара Хайяма приведены пять "принципов, заимствованных у Философа", 4 из которых являются известными утверждениями Аристотеля, откуда видно, что Философом Хайям называл Аристотеля. Тот из этих принципов, который отсутствует в известных нам сочинениях Аристотеля, гласит: "Две сходящиеся прямые линии пересекаются и невозможно, чтобы две сходящиеся прямые расходились в направлении схождения". Этот принцип, равносильный V постулату Евклида, по-видимому, был сформулирован Аристотелем в одном из его сочинений, которое не сохранилось.

" Во "Второй Аналитике" Аристотель указывал, что те, кто писал о параллельных линиях, совершали логическую ошибку "постулирование основания", т.е. неявно предполагали выполненным утверждение равносильное доказываемому. Отсюда ясно, что "принцип Философа" равносильный V постулату Евклида, был сформулирован Аристотелем в результате анализа того, что писали его предшественники о параллельных линиях. Утверждениям о параллельных линиях в других сочинениях Аристотеля посвящена статья Имре Тота "Теория параллельных у Аристотеля".

Во многих трудах Аристотеля цитируются недошедшие до нас сочинения Пифагора и Демокрита.

Евклид

Евклид (ок. 365 - ок.300 до н.э.) в своих "Началах" подвел итог античной элементарной геометрии и теории чисел. Когда Евклид закончил работу над этой книгой, он преподнес один экземпляр египетскому царю Птолемею I, в столице которого Александрии он работал. Царь перелистал книгу с непонятными для него чертежами и спросил Евклида: "Нет ли более короткого пути в науку, хотя бы для царя?". "Нет, - ответил Евклид, - нет царского пути в науку".

В Советском Союзе были очень популярны слова Маркса из его предисловия к французскому изданию "Капитала". Эти слова печатались на обложках тетрадей и были написаны на многих плакатах, висевших во всех школах и вузах : "К науке не ведет широкая столбовая дорога, и только тот может расчитывать достичь ее сияющих вершин, кто, не страшась трудов, карабкается по ее каменистым тропам". Перевод этот был сделан В.И.Лениным в одной из его статей. Во французском оригинале предисловия Маркса первые слова этого отрывка звучат так: "Il n'y a pas le roite royal pour la science", - "Нет царского пути в науку", т.е. Маркс процитировал слова Евклида. Ленин не знал этих слов Евклида и он перевел слова "царский путь" как "королевскую дорогу", которую он считал "широкой столбовой дорогой ".

Б.Л..Ван дер Варден доказал, что 13 книг "Начал" Евклида являются обработками сочинений греческих математиков IV века до н.э. На основе сочинений Гиппократа Хиосского составлены I книга об основах планиметрии, II книга о геометрической алгебре, III книга о кругах, IV книга о правильных многоугольниках и XI книга об основах стереометрии. На основе сочинений Евдокса составлены V книга о теории отношений геометрических величин, VI книга о подобии плоских фигур и XII книга о площадях и объемах.На основе сочинений пифагорейцев составлены VII-IX книги о теории чисел На основе сочинений Теэтета составлены X книга о квадратичных иррациональностях и XIII книга о правильних многогранниках.

Сочинение Гиппократа восходит к недошедшему до нас математическому сочинению Демокрита. Явно демокритовский характер носит I определение "Начал" - "Точка - то, что не имеет частей".

Однако в целом книга Евклида основана на математических принципах Аристотеля и содержит теорему о том, что любой отрезок может быть разделен пополам. По-видимому, восходит к принципу Аристотеля и V постулат Евклида.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Представляем Вашему вниманию похожие книги на «Пространства, времена, симметрии. Воспоминания и мысли геометра» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра»

Обсуждение, отзывы о книге «Пространства, времена, симметрии. Воспоминания и мысли геометра» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x