Все это очень заинтересовало молодого российского математика, и к концу первого года своей стажировки он уже написал несколько довольно оригинальных статей, вызвавших неподдельный интерес у профессионалов. В конце своей американской научной командировки Григорий Яковлевич получил сразу несколько лестных предложений по работе от ведущих мировых математических центров. При этом
-93-
все рекомендовавшие российского постдока отмечали, что Перельман обладал огромными способностями в решении задач и вместо того, чтобы годами конструировать сложную теоретическую базу или определять новые области для исследования, предпочитал концентрироваться на получении конкретных результатов. Между тем, несмотря на громадные технические сложности, вставшие у него на пути при решении задачи Пуанкаре в пространствах Александрова, для всех специалистов было очевидно, что российский математик нашел какой-то необычный путь к этой задаче тысячелетия.
Появление Интернета наконец-то позволило Григорию Яковлевичу работать в столь ценимом им одиночестве, используя необъятные информационные массивы электронных данных. Так, Перельман много работал над свежими статьями Гамильтона и даже провел по ним несколько семинаров у себя в институте.
Опубликовано много сотен страниц пояснений и комментариев к двум препринтам Перельмана. Пока ошибок не найдено, и большинство экспертов склоняются к мысли, что задача действительно решена.
В мае 2006 года комитет из девяти членов Всемирного союза математиков постановил наградить Григория Перельмана за решение гипотезы Пуанкаре медалью Филдса, которая вручается за достижения в области математики один раз в четыре года. Григорий за ней не приехал. Церемония награждения в Мадриде 22 августа прошла без гения. Несмотря на то что его уговаривал прибывший в Питер президент Всемирного союза математиков Джон Болл, Перельман объяснил, что признание ему не нужно. Главное, что мировая математическая общественность уверилась в совершенной правоте представленных им доказательств. Правда, к медали полагалось еще и вознаграждение — порядка семи тысяч долларов, но оно выдается только членам Международного математического союза, а для вступления в эту престижнейшую организацию, кроме многих бюрократических формальностей, следует еще и внести весомый вступительный
-94-
взнос — около пяти тысяч долларов. Откуда же взялся пресловутый миллион?
Внушительный приз действительно существует. Но к медали Филдса прямого отношения не имеет. В 1998 году на средства миллиардера Лэндона Клэя в Кембридже (США) был основан Математический институт его имени для популяризации математики. 24 мая 2000 года эксперты института выбрали, по их мнению, семь самых головоломных проблем и назначили награду в миллион долларов за разгадку каждой. Список называется «Проблемы тысячелетия» и включает следующие пункты.
1. Проблема Кука.Нужно определить, может ли проверка правильности решения какой-либо задачи быть более длительной, чем получение самого решения. Эта логическая задача важна для специалистов по криптографии — шифрованию данных.
2. Гипотеза Римана.Существуют так называемые простые числа, например 2, 3, 5, 7 и т. д., которые делятся только сами на себя. Сколько их всего, неизвестно. Риман полагал, что это можно определить и найти закономерность их распределения. Кто найдет, тоже окажет услугу криптографии.
3. Гипотеза Берча и Свиннертон-Дайера.Проблема связана с решением уравнений с тремя неизвестными, возведенными в степени. Нужно придумать, как их решать, независимо от сложности.
4. Гипотеза Ходжа.В XX веке математики открыли метод исследования формы сложных объектов. Идея в том, чтобы использовать вместо самого объекта простые «кирпичики», которые, склеиваются между собой и образуют его подобие. Нужно доказать, что такое допустимо всегда.
5. Уравнения Навье— Стокса.О них стоит вспомнить в самолете. Уравнения описывают воздушные потоки, которые удерживают его в воздухе. Сейчас их решают по приблизительным формулам. Нужно найти точные формулы и доказать, что в трехмерном пространстве существует решение, которое всегда верно.
-95-
6. Уравнения Янга— Миллса.В мире физики существует гипотеза: если элементарная частица обладает массой, то есть и ее нижний предел. Но какой — не понятно. Нужно до него добраться. Это, пожалуй, самая сложная задача. Для ее решения необходимо создать «теорию всего»: уравнения, объединяющие все силы и взаимодействия в природе. Тот, кто сумеет это сделать, вероятно, получит и Нобелевскую премию.
Читать дальше