Теперь, чтобы правильно сформулировать гипотезу Пуанкаре, осталось потерпеть еще немного: надо разобраться, что такое трехмерное многообразие в общем и трехмерная сфера в частности.
Вернемся на секунду к поверхностям, которые мы обсуждали выше. Любую из них можно разрезать на очень мелкие кусочки, каждый из которых будет напоминать кусочек плоскости. Так как у плоскости всего два измерения, то говорят, что и многообразие двумерно. Трехмерное многообразие — это такая поверхность, которую можно разрезать на мелкие кусочки, каждый из которых очень похож на кусочек обычного трехмерного пространства.
Главным «действующим лицом» гипотезы является трехмерная сфера. Представить себе трехмерную сферу как аналог обычной сферы в четырехмерном пространстве, не потеряв при этом рассудок, все-таки, наверное, невозможно. Однако описать этот объект, так сказать, «по частям» достаточно легко. Все, кто видел глобус, знают, что обычную сферу можно склеить из северного и южного полушарий по экватору. Так вот, трехмерная сфера склеивается из двух шаров (северного и южного) по сфере, которая представляет собой аналог экватора.
На трехмерных многообразиях можно рассмотреть такие же петли, какие мы брали на обычных поверхностях. Так вот, гипотеза Пуанкаре утверждает: «Если фундамен-
-52-
тальная группа трехмерного многообразия тривиальна, то оно гомеоморфно сфере». Непонятное словосочетание «гомеоморфно сфере» в переводе на неформальный язык означает, что поверхность может быть преобразована в сферу.
Будем чуточку более формальны. Говорят, что поверхность k -связна, если на ней можно провести k-1 замкнутую кривую, которая не делит ее на две части. Сфера (поверхность апельсина) односвязная: как ни проводи на ней замкнутую кривую, кусочек вырежется; а вот поверхность бублика двусвязная — ее можно, например, разрезать поперек, превратив в цилиндр, но сохранив целостность (а вот повторно разрезать цилиндр уже не получится). Для поверхностей в трехмерном пространстве это свойство как раз и означает, что в поверхности есть k-1 «дырка». В общем случае поверхность односвязная, если на ней любую замкнутую кривую можно непрерывной деформацией стянуть в точку, но поверхность бублика этим свойством не обладает (меридиан или параллель в точку не стягиваются).
Другое важное понятие — гомеоморфизм — также уже встречалось в рассуждениях о неразличимости чашки и бублика. Именно в этой неразличимости и дело: гомеоморфизм — это непрерывное преобразование, деформация, которой можно подвергнуть множество, сохранив при этом его топологические свойства (например, k -связность). Чашку легко непрерывным преобразованием превратить в бублик, а апельсин — в Солнце. При этом преобразовании сохраняются важнейшие топологические инварианты, такие как число k. Два множества, которые можно гомеоморфизмом превратить друг в друга, с топологической точки зрения считаются эквивалентными.
Гипотеза Пуанкаре состоит в том, что каждая односвязная трехмерная поверхность гомеоморфна трехмерной сфере. Обратите особое внимание на то, что «трехмерная поверхность» может размещаться в пространстве, чья размерность как минимум 4! Трехмерная сфера — это поверхность четырехмерного шара (привычная нам двухмерная сфера — поверхность трехмерного шара).
-53-
Рис. 20. Дискретный код трехмерной поверхности Терстона
Изображенные так называемые ячейки Терстона образуют своеобразную геометрическую головоломку. Если выбрать определенные коды Терстона: 6-8-7, 1-17-9 или 3-20-21, то каждый из них будет подсказывать, в какую геометрическую фигуру сложится трехмерная поверхность.
«В конце семидесятых принстонский математик Уильям Терстон, любивший иллюстрировать свои идеи с помощью ножниц и бумаги, предложил систематизировать все трехмерные многообразия. Он утверждал, что, несмотря на то что многообразия могут принимать любую форму, в действительности они тяготеют к некоторой "предпочтительной" геометрии (подобно тому, как кусок шелка, обернутый вокруг манекена, стремится принять его форму). Терстон предположил, что любое трехмерное многообразие может быть разложено на один или несколько компонентов, каждый из которых можно отнести к одному из восьми типов, включая сферический».
Сильвия Насер, Дэвид Грубер. Многообразная судьба. Легендарная проблема и битва вокруг ее решения
-54-
Доказывать гипотезу Пуанкаре начинают с произвольной римановой метрики на односвязном трехмерном многообразии М и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» все. Это означает, что исходное многообразие М можно представить как набор сферических пространственных форм, соединенных друг с другом трубками. Подсчет фундаментальной группы показывает, что М диффеоморфно связанной сумме набора пространственных форм. Таким образом, М является связной суммой набора сфер, то есть сферой.
Читать дальше