Палочка «два» в отношении к палочке «четыре» тоже находится в таком же отношении к палочке «четыре», как пять к десяти; 4:2=2; 2×2=4. Задача: узнаем, с каким числом палочек можно играть в эту игру? Можно взять 3 и 6; или 4 и 8.
В этом пункте нам приходят на помощь кубики из игры на запоминание чисел Если разложить кубики по два в ряду, то сразу видно, какие числа делятся на два, – все те, у которых внизу не имеется одинокого кубика. Все эти четные или парные числа, ибо их можно разложить парами по два; делить их на два легко: необходимо только отделить два ряда кубиков, стоящих один под другим. Сосчитав кубики каждого ряда, мы получим частное, а чтобы вновь составить первоначальное число, надо только снова собрать два ряда: 2×3=6.
Для детей пяти лет все это не представляет затруднений.
Повторения вскоре надоедают; но упражнение можно видоизменить, взяв опять серию длинных палочек, и вместо того чтобы прикладывать палочку к девяти, приложить ее к десяти. Равным образом мы можем приложить два к девяти, а три к восьми; мы получим палочки длиннее десяти; получим длины в одиннадцать, двенадцать, тринадцать и т. д. до двадцати. Для заучивания этих более высоких чисел можно пользоваться и кубиками.
Проделав действия с десятком, мы без труда переходим к двадцати. Единственное затруднение – десятичные числа, знакомство с которыми требует особых уроков.
Уроки на десятичные числа. Арифметические действия с числами свыше десяти. Необходимый для этого дидактический материал состоит из картонных квадратов, на которых число 10 изображено крупными цифрами, и из картонных прямоугольников, размерами в половину квадрата, на которых отпечатаны цифры от 1 до 9. Цифры мы располагаем в ряд: 1, 2, 3, 4, 5, 6, 7, 8, 9. Не имея больше цифр, мы должны начать сначала и берем цифру 1. Эта 1 подобна отрезку палочки 10, выдавшемуся за палочку 9. Просчитав по длине лестницы до девяти, мы видим, что осталась длина, которую, за неимением других цифр, мы опять обозначим цифрой 1. Но эта более высокая 1; и для отличия первой 1 мы ставим рядом нуль, – знак, означающий «ничего». Вот и 10. Прикрывая нуль прямоугольными карточками с цифрами в порядке из последовательности, мы получаем 5, 11, 12, 13, 14, 15, 16, 17, 18, 19. Эти цифры составляются путем прибавления к палочке 10 сперва палочки 1, потом 2, затем 3, пока, наконец, мы не прибавим палочки 9 к палочке 10, получив очень длинную палочку, которая после того, как мы сосчитаем красные и синие деления, даст нам девятнадцать.
После этого директриса показывает ребенку карточку, напр., 16; он приложит палочку 6 к палочке 10. Потом она снимает карточку 10 и на нуль кладет карточку 8, а ребенок отнимает палочку 6 и заменяет ее палочкой 8, получая таким образом 18. Каждое из этих действий можно записать таким образом: 10+6=16; 10+8=18 и т. д. Таким же путем мы делаем вычитание.
Когда ребенок получит ясное представление о числе, мы производим эти действия только с карточками, располагая прямоугольники с десятью цифрами в два столбца цифр на двух длинных кусках картона (см. фиг. А и В).
На карте А мы кладем на нуль второго десятка прямоугольник с цифрой 1; ниже – карточку с цифрой 2 и т. д. Таким образом 1 десятка остается без изменения, а числа справа возрастают от нуля до девяти.
С картой В операция сложнее; здесь карточки накладываются в числовой прогрессии десятков. После девяти переходим к следующему десятку, и так до 100.
Почти все наши дети считают до 100, с этим числом мы их знакомим в награду за проявленную ими любознательность.
Не думаю, чтобы эта сторона преподавания нуждалась в дальнейших разъяснениях.
Каждый преподаватель может разнообразить арифметические действия, пользуясь простыми предметами, которые детям нетрудно соединять и делить на группы.
Порядок и градация в использовании материалов и в упражнениях
Первая степень
Как только ребенок поступит в школу, ему нужно давать следующие упражнения.
Бесшумное передвигание стульев (упражнение в обыденных занятиях).
Шнуровка, застегивание пуговиц, крючков и т. п.
Цилиндры (упражнение чувств).
Из них самым полезным оказывается упражнение с цилиндрами (стереометрическими вкладками). Здесь ребенок учится сосредоточивать свое внимание. Он делает первые сравнения, первый выбор, упражняя способность суждения, а стало быть, и ум.
Упражнения со вкладками располагаются в порядке трудности следующим образом:
a) Цилиндры одинаковой высоты, убывающие в диаметре.
Читать дальше
Конец ознакомительного отрывка
Купить книгу