Очерк о Софье Ковалевской можно прочитать в книге «Люди русской науки». М., Физматгиз, 1961, стр. 178.
Вопрос о том, как надлежит в различных обстоятельствах разуметь и толковать слово «прямо», обсуждается весьма подробно в Схолии Четырнадцатой, так что ты уж, пожалуйста, не удивляйся этому вопросу.
Загляни, мой хороший читатель, в АЛ-II, XVI, XVII, XVIII, там все это рассказано очень подробно.
Однако, как на грех, при переписке Шэнкс пропустил один нуль, и эту его ошибку обнаружили только в 1948 году. Теперь с помощью электронно-счетных машин найдено уже несколько тысяч знаков числа π .
АЛ-II, XVI, XVII и XVIII, a в этой книжке — Схолия Девятнадцатая.
Загляни-ка в книжку А. А. Савелова «Плоские кривые» (М., 1966), там есть кое-что полезное о трисекции.
Лабиринты были широко известны в древности. На одной из стен засыпанного вулканическим пеплом Везувия города Помпеи нашли выцарапанный план лабиринта с надписью: «Здесь живет Минотавр».
Кто хочет узнать про Розамундину мышку подробнее, тот пусть возьмет книгу Н. Корбинского и В. Пекелиса «Быстрее мысли». М., «Молодая гвардия», 1959. А по части лабиринтов см. АЛ-I; III, IV, V, VI.
Есть очень хорошая книга известного польского математика Вацлава Серпинского «Что мы знаем и чего не знаем о простых числах». М., Физматгиз, 1963.
Тот, кто заинтересуется распределением простых чисел среди натурального ряда чисел, может узнать довольно интересные вещи по этому поводу в журнале «Знание — сила» (№ 3 за 1965 год, стр. 38-39, а также последняя страница обложки), где рассказывается о странной спирали из простых чисел, обнаруженной математиком С. Уламом. Эта углообразная спираль (чертится на клетчатой бумаге) обнаруживает ряд совершенно неожиданных правильностей по части разложения простых чисел в натуральном ряду. На этой необычной диаграмме не только самые простые числа, но и промежутки между ними располагаются в виде довольно длинных отрезков, образующих самые замысловатые узоры.
Есть книга по этим вопросам: М. М. Постников. Магические квадраты. М., «Наука», 1964.
АЛ-I, XI.
Если ты, читатель, захочешь познакомиться поближе с Бушмейстером, то вырезай и склеивай его из довольно плотной бумаги, потому что из тонкой бумаги он будет очень эффектно выкидывать свои петли, а разобраться в них будет труднее. Если хочешь, чтобы все тебе было ясно, то не поленись поступить так: при делении Бушмейстера на два раздели сперва (перед тем как склеивать) бумажку пополам вдоль прямой линии на две полоски при помощи карандаша с обеих сторон, затем выкрась левую полоску и красный цвет с одной стороны, а потом ту же полоску и с другой; когда ты теперь повернешь конец бумажки на 180°, чтобы склеить Бушмейстера, у тебя совпадут красная полоска с красной, а белая — с белой. Если ты вздумаешь делить Бушмейстера на три, то крась, начиная слева, первую полоску в красный цвет, среднюю — в синий, а последняя справа останется белой. Так же точно надо сделать с другой стороны, то есть красить в том же порядке, начиная опять слева. Какие ты выберешь краски и как их расположишь — это, конечно, дело твое; важно только, чтобы краски шли на обеих сторонах бумажной полоски в одном и том же порядке, начиная с какого-нибудь определенного края.
Если ты, любезнейший читатель, будешь делить Бушмейстера на пять частей, то раздели бумажку на пять полосок и, начиная слева, выкрась так: красная, белая, синяя, серая, зеленая. В этом случае бумажку лучше взять длиной 40 см, а шириной 5 см.
В это время кто-то сказал Илюше на ухо: «Достань себе книжку Г. Радемахера и О. Теплица «Числа и фигуры» и почитай там рассказ двадцать третий о периодических десятичных дробях. Он занимает всего восемнадцать страниц. Если тебе покажется мало, бери «Теорию чисел» И. В. Арнольда. Только там побольше восемнадцати страниц!»
Тут Илюша заметил, что кто-то с ним раскланялся и сел на какую-то длинную палку верхом (а на палке написано: «Ось большая эллиптическая») и со свистом улетел в неизвестность…
Между прочим, в «Архимедовом лете» имеется рассказ о сравнениях (AЛ-I, XI) и указания на систему вычетов, то есть остатков при делении на некоторое число. В данном случае возникает вопрос о степенных вычетах, или остатках при делении последовательных степеней числа 10 на знаменатель данной дроби.
Читать дальше