Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Здесь есть возможность читать онлайн «Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 1967, Издательство: Детская литература, Жанр: Детская образовательная литература, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

ВОЛШЕБНЫЙ ДВУРОГ: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «ВОЛШЕБНЫЙ ДВУРОГ»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.
Для среднего и старшего возраста.»
Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

ВОЛШЕБНЫЙ ДВУРОГ — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «ВОЛШЕБНЫЙ ДВУРОГ», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

— 473 —

одной шестой до одной двадцать четвертой.

А никто не получит своего письма теперь в девяти случаях. Значит, вероятность этого равна девяти двадцать четвертым, или трем восьмым. А для трех писем получалась одна треть. Можно так написать:

⅓ и ⅜ или 8/24 и 9/24.

Значит, вероятность того, что никто не получит своего письма, немного увеличилась. На одну двадцать четвертую.

— Это, конечно, очевидно. А как ты думаешь, что будет далее, если мы будем еще увеличивать число писем?

— Боюсь сказать, — отвечал Илюша. — Как будто вероятность должна понемножку расти?.. Нет, не знаю!

— Допустим, что она «понемножку» будет расти. А нельзя ли выяснить, как именно будет она расти?

Илюша не знал, что ответить.

— Я могу тебе чуточку подсказать. Если мы возьмем пять писем, то эта вероятность будет сорок четыре сто двадцатых, а если возьмем шесть писем, то она будет двести шестьдесят пять семьсот двадцатых.

— Длинные дроби какие-то. Ничего не поймешь!

— Не торопись, — отвечал Радикс. — Давай обратим внимание на то, сколько всего может быть комбинаций. Тут дело обстоит примерно так же, как с перестановками в Дразнилке.

Помнишь?

— Помню! — обрадовался Илюша. — Для трех было шесть, для четырех — двадцать четыре, для пяти — сто двадцать…

— Для шести?

— Для шести — семьсот двадцать… Постой-ка! Ведь в тех дробях, которые ты мне только что назвал, знаменатели тоже точь-в-точь такие же?

— Вот то-то и дело! Ну-ка, поворачивай мозгами!

— Назови мне опять эти дроби, я их запишу.

⅓, ⅜, 44/120, 265/720

— Приведу-ка я их к одному знаменателю, — решил Илюша.

240/720, 270/720, 264/720, 265/720

Долго он смотрел на то, что получилось, и наконец Радикс объяснил ему:

— 474 —

— Вероятность того, что никто не получит своего письма, то увеличивается, то уменьшается, а изменяется при этом все медленнее и медленнее. Обрати внимание на то, что первые дроби разнятся друг от друга на одну двадцать четвертую, следующие две — на одну сто двадцатую, следующие две — на одну семьсот двадцатую. А если взять еще одну дробь, то она уже от последней будет отличаться на дробь, равную единице, деленной на 5040. Следующая разность будет равна единице, деленной на 40320… Ты, может быть, помнишь это число?

— Помню, — довольно мрачно ответил Илюша, ибо это воспоминание ему не очень-то нравилось.

— Таким образом, изменение вероятности будет идти все медленнее и медленнее. Скоро это и заметить будет невозможно. Ну, а какой же вывод из этого можно сделать, по-твоему?

Илюша думал, думал, но придумать ничего не мог. Никакого вывода у него не получалось.

— Вот как тут обстоит дело, — отвечал Радикс, — здесь мы имеем дело с процессом, который напоминает процесс нарастания суммы бесконечной убывающей геометрической прогрессии. Как там, так и тут слагаемые становятся все меньше и меньше. Как там, так и тут, если число случаев растет до бесконечности, сумма этих слагаемых стремится к определенному пределу (из чего, впрочем, отнюдь не следует, что если слагаемые какого-нибудь ряда уменьшаются, то у их суммы обязательно существует предел; но в данном случае это будет так). Однако тут есть одна немаловажная подробность, касающаяся того, как. именно наша переменная вероятность приближается к своему пределу. Она-то тебя и путала, когда ты смотрел на дроби. В геометрической прогрессии мы просто приближаемся к пределу: что ни шаг, то все ближе. Здесь это дело обстоит не так; вероятность все время колеблется то в одну сторону, то в другую: то она чуть побольше предела, то чуть поменьше. Вспомни-ка нашу «змейку» из Схолии Двенадцатой. Размахи этих колебаний все уменьшаются, и абсолютная величина разности между вычисленной вероятностью и ее пределом падает и падает. Если мы число писем будем увеличивать до бесконечности, то предел этот будет равен примерно 0,367879441171442… Это число замечательное, и мы уже встречались с ним (вернее сказать, с его обратной величиной) в Схолии Семнадцатой. Оно имеет отношение и к логарифмам, и к нашим друзьям комплексным человечкам, и к гиперболе, и к цепной линии, и еще к очень многому в математике, оно нее находится в большой дружбе с числом π и даже приходится ему в некотором роде родственником. Если ты разделишь единицу на это число, то

— 475 —

получишь не что иное, как знаменитое неперово число, основание натуральных логарифмов.

— Опять эта знаменитость! — воскликнул Илюша. — Но, значит, пределы встречаются не только при вычислении площадей? И как это опять одно за другое цепляется!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «ВОЛШЕБНЫЙ ДВУРОГ»

Представляем Вашему вниманию похожие книги на «ВОЛШЕБНЫЙ ДВУРОГ» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «ВОЛШЕБНЫЙ ДВУРОГ»

Обсуждение, отзывы о книге «ВОЛШЕБНЫЙ ДВУРОГ» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x