Разделите кошку на атомы. Перемешайте их. Существует гораздо больше микросостояний кошачьих атомов, случайным образом перемешанных в воздухе комнаты, чем микросостояний собранной из тех же атомов кошки на диване. Кошка – в высшей степени невероятный случай организации атомов, и, следовательно, по сравнению с теми же рассеянными в воздухе атомами, она характеризуется низким значением энтропии и высоким – информации.
Атомы газа движутся хаотично. Когда они сталкиваются, направление их движения меняется более или менее произвольно. Таким образом, время, как правило, делает микросостояния случайнее. Если микросостояние не было случайным, то довольно скоро оно станет таковым. И если мы начнем с равновесного макросостояния с низкой энтропией, то, скорее всего, его энтропия возрастет. Это второе начало термодинамики.
Поставим эксперимент. Для этого нужны игральные карты. Предположим, что карты в колоде расположены по порядку. После этого раз в секунду они перетасовываются. Каждая перетасовка делает порядок более случайным. Энтропия, как правило, возрастает. После нескольких перетасовок порядок карт нельзя будет отличить от случайного. Ни намека на первоначальный порядок, по сути, уже нет.
Эта закономерность отражена во втором начале термодинамики. В контексте нашего эксперимента этот закон гласит: перетасовка колоды будет стремиться уничтожить любой начальный порядок карт, заменив его случайным.
Но энтропия возрастает не всегда. Так, возвращение к первоначальному порядку в колоде снижает энтропию. Однако гораздо вероятнее разупорядочение карт и, соответственно, увеличение энтропии. Чем больше в колоде карт, тем меньше вероятность того, что их перетасовка восстановит начальный порядок. Следовательно, тем больше интервалы времени между такими перетасовками, которые восстанавливают порядок в колоде. Тем не менее, пока число карт конечно, есть конечное время, за которое (при ежесекундной перетасовке) порядок с некоторой конечной вероятностью восстановится, – время возвращения Пуанкаре . Если вы следите за системой гораздо более короткое время, то, скорее всего, заметите лишь возрастание энтропии. А если наблюдать за системой в течение времени более длительного, чем время возвращения Пуанкаре, то, скорее всего, отметите и уменьшение энтропии.
Пример справедлив и для газа. Здесь также упорядоченная конфигурация атомов, например конфигурация, в которой все атомы находятся в одной половине объема и движутся в одном направлении. Эти конфигурации аналогичны тем, в которых все карты упорядочены. Но, хотя эти упорядоченные конфигурации атомов и существуют, они гораздо менее вероятны, нежели конфигурации, в которых атомы размещены в случайном порядке по всему объему и двигаются в случайных направлениях.
Если начать с конфигурации, в которой все атомы находятся в одном углу объема и движутся в одном направлении, мы увидим, что по мере того, как они рассеиваются, они распределятся по всему объему. Через некоторое время атомы полностью перемешаются и плотность атомов в объеме станет однородной.
Примерно с той же скоростью направления, в которых атомы движутся, а также их энергии приобретут случайные значения, поскольку атомы сталкиваются. В итоге большинство атомов приобретет энергию, близкую к средней, которая и является температурой.
Как бы необычен ни был порядок начальной конфигурации, через некоторое время плотность и температура газа в объеме будут распределены равномерно. Это состояние равновесия. Достигнув равновесия, газ, скорее всего, останется в этом состоянии.
Второе начало термодинамики в этом контексте утверждает, что за короткое время наиболее вероятное изменение энтропии является положительным или, по крайней мере, нулевым. Если вы начинаете с неравновесного состояния, то начинаете с менее вероятной конфигурации и, следовательно, с более низкого значения энтропии. Наиболее вероятно, что в дальнейшем конфигурация из-за столкновений атомов станет более вероятной. Энтропия возрастет. Если вы начинаете с равновесного состояния, в котором энтропия максимальна, то, поскольку конфигурация уже разупорядочена, то, скорее всего, она таковой и останется. Но если наблюдать за поведением атомов очень долго, то, как отмечалось, маловероятные флуктуации могут привести газ в более упорядоченное состояние. Наиболее вероятными среди флуктуаций являются незначительные отклонения плотности газа от среднего значения в ту или иную сторону в разных частях объема. Гораздо менее вероятно, что все атомы снова соберутся в одном углу объема. Но если наблюдать достаточно долго, то такие ситуации тоже будут возникать. Пока число атомов конечно, будут происходить флуктуации, приводящие к любой конфигурации атомов, какими бы редкими они ни были.
Читать дальше
Конец ознакомительного отрывка
Купить книгу