At the moment, we do not yet have the technology to produce cellulosic ethanol at sufficiently low price and large scale to penetrate the liquid-fuels market. Woody material contains lignin, a tough polymer that surrounds the cellulose to strengthen and protect the plant. Lignin prevents enzymes from reaching the cellulose to break it down to sugars that can then be converted to ethanol. Current methods for doing this require strong acids or high temperatures, making them uneconomic. But cows and termites, through a symbiotic relationship with gut bacteria, have no problem breaking down cellulose, and promising research is under way to discover how we can too. 135Another potential source of liquid biofuels is algae (e.g., algenol), which can be grown in non-agricultural, non-forest places like deserts, potentially even from wastewater and seawater.
Whether from increased competition with food crops, or the harvesting of brush and wood for cellulose, a downside of all biofuels is a pressure to expand cultivation, putting even more pressure on natural habitats. Because they consume so much land area, biofuels have the largest “ecological footprint” of any energy source including fossil fuels. 136Another challenge is purely logistical. Most plant biomass is dispersed over the landscape. How will we secure enough of it, and deliver it to plants at a reasonable cost, without also burning large amounts of fuel in the process? In an echo of hydrogen, this lack of broad-scale processing infrastructure thus remains an open challenge to major production of liquid biofuels.
Of the nonfossil fuel sources of energy, biomass is the world’s most important source today, accounting for around 9%-10% of total primary energy consumption. Most of this comes from burning wood and dung for heating and cooking in developing countries. While less than 1% of the world’s electricity production comes from biomass, its role is expected to grow across all energy sectors in the next forty years, with total biomass consumption rising 50%-300% by the year 2050. 137Sugarcane ethanol is already a success, and most experts feel that an economically viable cellulosic technology will be found. If the described challenges to agriculture, land management, and infrastructure can be met, biofuels could possibly supply up to a quarter of all liquid transport fuels by 2050. 138But this is no small task: With world population growing another 50% over the same period, it means tripling our current agricultural productivity. Total bioenergy use in 2050 would have to approach the level of world oil consumption today.
Was Jack Lemmon’s Oscar a Setback for the United States?
On March 16, 1979, the movie thriller The China Syndrome opened, starring Jack Lemmon, Michael Douglas, and Jane Fonda. It was about a nuclear accident, compounded by a series of human blunders and criminal acts, at a fictional nuclear power plant in California. By sheer coincidence, just twelve days later a nuclear reactor core was seriously damaged at the Three Mile Island power plant near Harrisburg, Pennsylvania. The level of radioactivity leaked into the environment was too low to harm anyone, but the accident’s timing was uncanny. The real accident, although quickly contained, brought immediate attention to the film and it became a box-office smash.
Jack Lemmon won an Academy Award for his performance as the distraught plant manager who barricades himself inside the control room to prevent a criminal cover-up by the plant’s owners. I won’t spoil the ending, but the story remains gripping to this day. The China Syndrome horrified an audience of millions and, together with the accident at Three Mile Island, helped to turn the court of U.S. public opinion against nuclear energy. The last year that a construction permit for a new nuclear power plant was issued in the United States was 1979. 139
Then, a second, far more deadly catastrophe occurred. On April 26, 1986, nuclear reactor unit No. 4 exploded at the Chernobyl power plant in Ukraine, then part of the Soviet Union. The blast and consequent fire that burned for days released a radioactive cloud detected across much of Europe, with the fallout concentrated in Belarus, Ukraine, and Russia. Two people were killed in the plant explosion, and twenty-eight emergency workers died from acute radiation poisoning. About five million people were exposed to some level of radiation.
Soviet officials initially downplayed the accident. It took eighteen days for then-general secretary Mikhail Gorbachev to acknowledge the disaster on Soviet television, but he had already mobilized a massive response. Soviet helicopters dropped more than five thousand tons of sand, clay, lead, and other materials on the reactor’s burning core to smother the flames. Approximately 50,000 residents were evacuated from the nearby town of Pripyat, still abandoned today with many personal belongings lying where they were left. Some 116,000 people were relocated in 1986, followed by a further 220,000 in subsequent years. Approximately 350,000 emergency workers came to Chernobyl in 1986-87, and ultimately 600,000 were involved with the containment effort. Today, a thirty-kilometer “Exclusion Zone” surrounds the Chernobyl disaster site, and Ukraine’s government expends about 5% of its budget annually on costs related to its aftermath. 140Although claims of tens or even hundreds of thousands of deaths are exaggerated—by conservative estimates perhaps 8,000 people suffered cancer as a result of Chernobyl 141—and the failures leading to the explosion are unlikely to be repeated, it was an epic catastrophe from which the Soviet Union and nuclear industry never fully recovered. In the United States and many other countries, what lingering support for nuclear power had remained after Three Mile Island was largely buried alongside the victims of Chernobyl.
Today, that situation appears about to change. In late 2008, the U.S. company Northrop Grumman and the French company Areva, the world’s largest builder of nuclear reactors, announced a $360 million plan to build major components for seven proposed U.S. reactors. Twenty-one companies were seeking permission to build thirty-four new nuclear power plants across the United States, from New York to Texas. By 2009 the French firm EDF Group was planning to build eleven new reactors in Britain, the United States, China, and France, and contemplating several more in Italy and the United Arab Emirates. In 2010 U.S. president Barack Obama pledged more than $8.3 billion in conditional loans to build the first nuclear reactor on U.S. soil in over three decades, and for his 2011 budget sought to triple loan guarantees (to $54.5 billion) supporting six to nine more. In a Wall Street Journal Op-Ed, U.S. secretary of energy Steven Chu called for building “small modular reactors,” less than one-third the size of previous nuclear plants, made in factories and transported to sites by truck or rail. And for the first time nearly two-thirds of Americans were in favor of nuclear power, the highest level of support since Gallup began polling on the issue in 1994. 142
One reason for all the renewed interest is that nuclear fission is one of only two forms of carbon-free energy already contributing a significant fraction of the world’s power supply. 143Notwithstanding the threatening appearance of billowing white plumes streaming from concrete nuclear towers, they emit no greenhouse gases directly, 144thus winning the support of a surprising number of climate-change activists. To date, nuclear reactors have been tapped mainly to produce electricity, but they also have potential uses for seawater desalinization, district heating, and making hydrogen fuel. 145Nuclear power plants are very costly and take years to build, but once established they can provide electricity at prices comparable to burning fossil fuel. In some countries like Japan, nuclear power is actually cheaper than fossil-fuel power. 146Nuclear advocates point to France, which gets about 80% of its electricity from nuclear plants with no accidents so far. Belgium, Sweden, and Japan also obtain large amounts of electricity from nuclear reactors, so far without major mishap.
Читать дальше