Как можно интерпретировать рождение подобной системы? Вероятно, на периферии протозвездного облака с самого начала существовало локальное уплотнение, которое в конце концов обособилось и породило компоненту С, чье расстояние от А и В составляет примерно 0,2 светового года. Основное же прото-звездное облако (точнее, его плотная центральная часть) разделилось уже гораздо позднее.
Еще более удивительная система – Кастор (Альфа Близнецов). В телескоп она разрешается на две компоненты с небольшой разницей в блеске. Вокруг этих двух звезд, обращающихся вокруг общего центра тяжести, движется по удаленной орбите спутник – слабая красная звездочка. И каждая из этих трех звезд является спектрально-двойной, то есть настолько тесной звездной парой, что ее двойственность выявляется лишь спектроскопическими методами. Здесь примерно та же ситуация, что и с системой Альфа Центавра, только каждое из трех протозвездных облаков успело до рождения звезды разделиться надвое, чему, несомненно, «помог» избыток момента вращения.
У любознательного читателя может возникнуть вопрос: а что будет, если сжимающееся протозвездное облако, имеющее массу, скажем, 10 тыс. масс Солнца, окажется сферическим и практически не вращающимся? «Этого не может быть», – ответит астроном. «Ну а все-таки если?..»
Неужели родится звезда чудовищной массы и совершенно невообразимой светимости?
Нет, не родится. Теоретические расчеты показывают, что предел массы для звезды – около 100 солнечных масс. Светимость ее при этом составит порядка миллиона солнечных. Характерный пример: переменная-сверхгигант Р Лебедя. Звезда большей массы и, естественно, еще большей светимости будет просто-напросто разрушена собственным излучением. Теоретические выкладки подтверждаются наблюдениями: звезды с массами более 100 солнечных во Вселенной не обнаружены. Астрономов долго интриговал объект R136a в Большом Магеллановом Облаке. Выглядя звездой, он имеет массу порядка 2000 солнечных, что резко противоречит теории. Так что же, теория неверна? Отнюдь. Просто данный объект оказался не звездой, а тесным скоплением из минимум 70 молодых горячих звезд. Выяснилось это лишь с помощью космического телескопа им. Хаббла…
«Большие неприятности» гарантированы звезде и в том случае, если ее масса превышает 70 солнечных масс. К примеру, звезда Эта Киля находится на грани устойчивости и погружена в туманность, состоящую из вещества, выброшенного звездой при вспышке. Как видим, чрезмерно массивная звезда пытается как-то подстроить свою структуру под «общий стандарт», избавляясь от излишков вещества. Кстати, Эта Киля – вероятный кандидат в сверхновые. Не исключено, что она взорвется в течение ближайших одной-двух тысяч лет.
Стоит подчеркнуть, что нарисованная выше картина рождения кратных звезд является предельно упрощенной, не учитывающей ни влияния магнитных полей, ни вихревых движений в сжимающемся облаке. Впрочем, главное для нашей задачи – понять в общих чертах, как возникла Солнечная система, поэтому такое упрощение, пожалуй, не является чрезмерным.
Важно следующее: звезды, как правило, рождаются не поодиночке, а кратными системами, чаще всего в составе молодого рассеянного скопления, которое, в свою очередь, входит в состав звездной ассоциации, содержащей сотни тысяч, если не миллионы звезд, а та, в свою очередь, нередко является частью звездного комплекса с характерным поперечником 600 пк. Почему мы говорим о рассеянных скоплениях вроде показанного на рис. 12 (см. цветную вклейку)? Потому что в наше время в Галактике уже давно не образуются шаровые скопления, содержащие сотни тысяч звезд. Все шаровые скопления Галактики (рис. 13), а их известно более 130, – старые объекты, содержащие старые звезды. Шаровые скопления рождались на самых ранних этапах жизни Галактики, когда диффузная материя для их создания имелась в избытке. Теперь же в Галактике содержится слишком мало газа (не более 10 % от массы Галактики [11]). Сравнительно молодые шаровые скопления попадаются лишь в небольших неправильных галактиках, где скорость звездообразования вообще замедлена, но не у нас. В нашей Галактике в современную эпоху рождаются лишь рассеянные скопления, содержащие обычно несколько десятков или сотен звезд.
Рис. 13. Шаровое скопление М3
Сказанное не означает, что в Галактике невозможно рождение одиночных звезд. Астрономам давно известны глобулы – маленькие темные туманности с массами, не сильно отличающимися от массы Солнца, и значительными (для туманностей) плотностями. Согласно расчетам, некоторые из глобул в перспективе должны начать сжиматься (если уже не сжимаются). На практике же глобулы с «пограничным» значением радиуса, массы и температуры могут весьма долго пребывать в «подвешенном» состоянии, не сжимаясь и не рассеиваясь. Облаку могут помочь начать сжатие следующие факторы.
Читать дальше
Конец ознакомительного отрывка
Купить книгу