Павел Полуэктов - Озадачник - 133 вопроса на знание логики, математики и физики

Здесь есть возможность читать онлайн «Павел Полуэктов - Озадачник - 133 вопроса на знание логики, математики и физики» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2017, ISBN: 2017, Издательство: Литагент Альпина, Жанр: Математика, Философия, Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Озадачник: 133 вопроса на знание логики, математики и физики: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Озадачник: 133 вопроса на знание логики, математики и физики»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Может ли завтра начаться сегодня? Как быстро перемножить в уме 748 на 1503? Каков минимальный размер черной дыры? Почему не тают ледяные жилища эскимосов, когда в них разводят огонь? Авторы предлагают вам проверить свои знания математики, физики и логики. Каверзные вопросы, варианты ответов с подвохом и подробные решения помогут провести время интересно и с пользой.

Озадачник: 133 вопроса на знание логики, математики и физики — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Озадачник: 133 вопроса на знание логики, математики и физики», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[5]

У вас есть шахматная доска и 32 костяшки домино, причем размер костяшки – аккурат две клетки доски. Таким образом, вы без труда и большим числом способов сможете закрыть шахматную доску фишками домино. Срезаем по одной клетке в углах доски на концах одной из диагоналей – удастся ли 31 костяшкой закрыть все клетки такой доски?

Варианты ответов

1. Нет, это невозможно.

2. Да, одним-единственным способом.

3. Да, и способов сделать это – множество.

Правильный ответ: 1

Ответ поражает – интуитивно-то нам кажется, что можно закрыть обрезанную доску 31 костяшкой, – но еще больше поражает красота и простота доказательства, почему этого сделать нельзя. Обратим внимание, что когда мы закрываем целую, неиспорченную доску, то каждая костяшка покрывает две клетки разного цвета – и черную, и белую, сделать так, чтобы клетки были одноцветные (две белые или две черные), не получится никоим образом. Теперь отметим тот факт, что клетки на концах любой диагонали доски 8 × 8 – одного цвета (для определенности будем считать, что белые), таким образом, после срезания двух клеток у нас на доске будут 62 белые и 64 черные клетки, или, иначе, у двух черных клеток не будет пары – отсюда с необходимостью следует, что покрыть такую доску 31 костяшкой не представляется возможным. Разве что одну из костяшек мы тоже решим порезать.

58 Какой длины Берем отрезок длины 1 выламываем из него посередине треть и - фото 59

58. Какой длины?

Берем отрезок длины 1, выламываем из него посередине треть и заменяем ее на два отрезка, представляющие собой две стороны равностороннего треугольника, третьей стороной которого служит выброшенный нами отрезок. Затем с каждым звеном полученной ломаной проделываем то же самое, потом с новой ломаной, и так далее до бесконечности. Какой будет длина полученной в итоге линии?

Варианты ответов

1. 4/3.

2. Сумма бесконечного сходящегося ряда 1 + 1/3 + 1/3² +… = 3/2.

3. И не сосчитаешь!

Правильный ответ: 3

Фигура, которая получается в итоге, – это кривая (еще говорят «снежинка») Коха (по имени автора, шведского математика Хельге фон Коха), один из самых известных фракталов – видимо, потому, что его проще всего рисовать. А еще несложно посчитать его длину на каждом этапе «сборки»: когда мы ломаем отрезок первый раз, мы заменяем среднюю часть (длины 1/3) на два отрезка, каждый такой же длины (треугольник по условию равносторонний). Сложим длины всех отрезков (1/3 + 1/3 + 1/3 + 1/3), получим 4/3. А какой будет длина ломаной на втором шаге? Очевидно, длина каждого маленького отрезка (1/3) увеличится, как видим из предыдущего рассуждения, в 4/3 раз, всего таких отрезков четыре, значит, суммарная длина всей ломаной будет уже (4/3)². И с каждым шагом эта степень будет увеличиваться, длина ломаной растет, причем экспоненциально, т. е. с каждым шагом все быстрее! Так, уже на четвертом шаге она будет превышать первоначальную втрое, на десятом – в 18 раз, на сотом – в 3 трлн раз! Фракталы на плоскости – удивительные фигуры, не имеющие ни длины (она, как видим, бесконечна), ни площади (она-то как раз равна нулю). Любопытно, что в жизни фракталы, про которые большинство людей даже не знает, встречаются на каждом шагу: это и деревья, и облака, и, конечно, снежинки.

59 Что загадать Вам и сопернику предлагают загадать натуральное число Если - фото 60

59. Что загадать?

Вам и сопернику предлагают загадать натуральное число. Если загаданные вами числа совпадут, то вы оба получаете призы, если же они разные, то не получаете ничего. Какое число следует загадать?

Варианты ответов

1. Один.

2. Десять.

3. Любое, вероятность выигрыша одинакова и ничтожно мала.

Правильный ответ: 1

Чем больше диапазон чисел, тем меньше шансов, что загаданное вами число совпадет с числом соперника. Так, если это диапазон от 1 до 10, шансы на совпадение только 10 %, если от 1 до 100, то только 1 %. Поэтому вам нужно максимально сузить этот диапазон, и это возможно в случае, если в диапазон попадает только одно число – от одного до одного. Если соперник станет руководствоваться той же логикой, то загаданные числа совпадут, приз будет ваш.

60 За спичками В коробке лежит 21 спичка Вы ходите первым в игре у вас один - фото 61

60. За спичками

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Озадачник: 133 вопроса на знание логики, математики и физики»

Представляем Вашему вниманию похожие книги на «Озадачник: 133 вопроса на знание логики, математики и физики» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Озадачник: 133 вопроса на знание логики, математики и физики»

Обсуждение, отзывы о книге «Озадачник: 133 вопроса на знание логики, математики и физики» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x