Armand Leroi - Mutants

Здесь есть возможность читать онлайн «Armand Leroi - Mutants» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: New York, Год выпуска: 2005, ISBN: 2005, Издательство: Penguin Books, Жанр: История, Биология, sci_popular, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mutants: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mutants»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Stepping effortlessly from myth to cutting-edge science,
gives a brilliant narrative account of our genetic code and the captivating people whose bodies have revealed it—a French convent girl who found herself changing sex at puberty; children who, echoing Homer’s Cyclops, are born with a single eye in the middle of their foreheads; a village of long-lived Croatian dwarves; one family, whose bodies were entirely covered with hair, was kept at the Burmese royal court for four generations and gave Darwin one of his keenest insights into heredity. This elegant, humane, and engaging book “captures what we know of the development of what makes us human” (
).

Mutants — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mutants», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

It was a woolly argument, and it did not go unchallenged. The German anatomist Carl Gegenbauer pointed out that human fingers, supernumerary or otherwise, could not regenerate if amputated, and even if they could, so what? Polydactyly could not be an atavism without a polydactylous ancestor, and all known tetrapods, living or dead, had five fingers. In the next edition of The variation seven years later, Darwin, ever reasonable, admitted that he’d been wrong: polydactylous fingers weren’t atavisms; they were just monstrous.

But Darwin may have been right after all – albeit for the wrong reasons. In the last ten years or so, the ancestry of the tetrapods has undergone a radical revision. New fossils have come out of the rocks, and strange things are being seen. Contrary to all expectations, humans – and all living tetrapods – do have polydactylous ancestors. The earliest unambiguous tetrapods in the fossil record are a trio of Devonian swamp-beasts that lived about 360 million years ago: Acanthostega, Turlepreton and Ichthyostega . All of them are, by modern tetrapod standards, weirdly polydactylous: Acanthostega has eight digits on each paw, Turlepreton and Ichthyostega have either six or seven. Suddenly it seems quite possible that Hoxd13-mutant mice, and mutant polydactylous mammals of all sorts, are indeed remembrances of times past – only the memory is of an early amphibian and not a fish.

Perhaps more genetic fiddling is required to get back to a fish fin; more layers have to be removed. This seems to be so. Mice that are mutant for Hoxd13 may be polydactylous, but mice that are mutant for Hoxd13 as well as other Hox genes – that is, are doubly or even trebly mutant – have no digits at all. It may be that as developmental geneticists strip successive Hox genes from the genomes of their mice, they are reversing history in the laboratory; they are plumbing a five-hundred-million-year odyssey that reaches from fish with no fingers to Devonian amphibians with a surplus of them, and that ends, finally, with our familiar five.

V

FLESH OF MY FLESH, BONE OF MY BONE

[ON SKELETONS]

AROUND 1896, a Chinese sailor named Arnold arrived at the Cape of Good Hope. We do not know much about him, nor are there any extant portraits. We can, however, suppose that he was rather short and that he had a bulging forehead. He was probably soft-headed – not a reflection on his intelligence, but rather on the fact that he was missing the top of his skull. He probably did not have clavicles, or if he did, they may not have made contact with his shoulderblades. Had someone stood behind him and pushed, Arnold’s shoulders could have been induced to meet over his chest. He may have had supernumerary teeth or he may have had no teeth at all.

THANATOPHORIC DYSPLASIA STILLBORN INFANT AMSTERDAM c 1847 FROM WILLEM - фото 28
THANATOPHORIC DYSPLASIA. STILLBORN INFANT, AMSTERDAM c. 1847. FROM WILLEM VROLIK 1844–49 TABULAE AD ILLUSTRANDAM EMBRYOGENESIN HOMINIS ET MAMMALIUM TAM NATURALEM QUAM ABNORMEM.

We can guess all this because Arnold was exceptionally philoprogenitive, and many of his numerous descendants carry these traits. Arriving in Cape Town, he converted to Islam, took seven wives, and submerged himself in Cape Malay society. The Cape Malays are a community of broadly Javanese descent, but one that has absorbed contributions from San, Xhoi-Xhois, West Africans and Malagasys within its genetic mix. Traditionally artisans and fishermen, the Cape Malays made the elegant gables of the Cape Dutch manors found on South Africa’s winegrowing estates, gave the nation’s cuisine its Oriental tang, and the Afrikaans language a smattering of Malay words such as piesang. A 1953 survey revealed Arnold’s missing-bone mutation in 253 of his descendants. By 1996, the mutation had been transmitted to about a thousand people. Fortunately, a lack of clavicles and the occasional soft skull are not very disabling. Arnold’s clan are, indeed, quite proud of their ancestor and his mutation.

MAKING BONE

Perhaps because they are the last of our remains to dissipate to dust, we think of bones as inanimate things. But they are not. Like hearts and livers, bones are continually built up and broken down in a cycle of construction and destruction. And though they seem so separate from the rest of our bodies, they originate from the same embryonic tissues that make the flesh that covers them. In a very real sense, bone is flesh transformed.

The intimate relationship between bones and flesh can be seen in the origin of the cells that make them. Most bone cells – osteoblasts – are derived from mesoderm, the same embryonic tissue that also gives rise to connective tissue and muscle. The relationship can also be seen in the way that bones form. Buried within each bone are the remains of the cells that made it.

Our various bones are made in two quite different ways. Flat bones, such as those of the cranium, start out in the embryo as a layer of osteoblasts that secrete a protein matrix. Calcium phosphate spicules form upon this matrix and encase the cells. As the bone grows, layers of osteoblasts are added and each is, in turn, entombed by its own secretions. Long bones, such as femurs, do things a bit differently. They start out as the condensations of cells that are visible in an embryo’s developing limbs. These cells, which are also derived from mesoderm, are called chondrocytes and they produce cartilage. The cartilage is a template for the future bone, one that only later becomes invaded by osteoblasts. When the template first appears, it is bone in form but not in substance.

One of the molecules that controls these condensations is bone morphogenetic protein (BMP). It is convenient to speak of it as one molecule, but it is really a family of them. Like so many families of signalling molecules, the BMPs crop up in the most unexpected places in the embryo. It is a BMP that, long before the bones are formed, instructs some the embryo’s cells to become belly rather than back. In older embryos, however, BMPs appear in the condensations of cells that will become future bones. In children and adults, they appear around fractured bones. The remarkable thing about BMPs is their ability to induce bone almost anywhere. If one injects BMPs underneath the skin of a rat, nodules of bone will form that are quite detached from the skeleton, but that look very much like normal bone, even to the extent of having marrow.

To make bone it is not enough that undifferentiated cells condense in the right places and quantities. The cells have to be turned into osteoblasts and chondrocytes. To return to a metaphor that I used earlier, they have to calculate their fates. The gene that calculates the fates of osteoblast happens to be the one responsible for ‘Arnold-head’. This gene encodes a transcription factor called CBFA1. It may be thought that CBFA1 is not very important, since mutations in it result only in a few missing bones. However, Arnold’s descendants are heterozygous for the mutation: only one of their two CBFA1 genes carries the mutant copy. Mice heterozygous for a mutation in the same gene also have soft heads and lack clavicles. But mice that are homozygous for the mutation are literally boneless. Instead of skeletons they have only bands of cartilage threading through their bodies, and their brains are protected by little more than skin. They are completely flexible and they are also dead. Boneless mice die within minutes of being born, asphyxiated for want of a ribcage to support their lungs.

By one of those quirks of genetic history, South Africa is also home to a mutation that has the opposite effect of Arnold’s: one that causes not a deficiency of bone, but rather an excess. Far from having holes in their skulls, the victims of this second mutation have crania that are unusually massive. The mutation’s effects are not obvious at birth. The thick skulls and coarse features that characterise this syndrome only come with age. Unlike the boneless mutation, the extra-bone mutation is often lethal. Its victims usually die in middle age from seizures as the excess bone crushes some vital nerve. Again, unlike the boneless mutation, the thick-skull mutation is recessive and so is expressed in only a handful of people – inbred villagers descended from the original Dutchmen who founded the Cape Colony in the seventeenth century.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mutants»

Представляем Вашему вниманию похожие книги на «Mutants» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Robert Silverberg - La saison des mutants
Robert Silverberg
KITS PEDLERS DZERIJS DEIVISS - MUTANTS-59 PLASTMASU ĒDĀJS
KITS PEDLERS DZERIJS DEIVISS
StaVl Zosimov Premudroslovski - MUTANTS SOVIET. Faceta fantasy
StaVl Zosimov Premudroslovski
StaVl Zosimov Premudroslovsky - Mutants soviet. Fantaziya kezeb
StaVl Zosimov Premudroslovsky
StaVl Zosimov Premudroslovsky - MUTANTS SOVIET. Ffantasi doniol
StaVl Zosimov Premudroslovsky
StaVl Zosimov Premudroslowski - SOVIET MUTANTS. Witzeg Fantasi
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - SOVIET MUTANTS. Grappige fantasy
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - Sovietate mutants. Fantasia dibertigarria
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - SOVIET MUTANTS. Hauska fantasia
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - SOVJET MUTANTS. Grappige fantasie
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - SOVIET MUTANTS. Snaaks fantasie
StaVl Zosimov Premudroslowski
StaVl Zosimov Premudroslowski - Mutants soviétiques. Drôle de fantaisie
StaVl Zosimov Premudroslowski
Отзывы о книге «Mutants»

Обсуждение, отзывы о книге «Mutants» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x