Рис. 9. Архимед открывает выталкивающую силу. Гравюра на дереве из труда Витрувия «Десять книг об архитектуре», Венеция, 1511 год
Архимеду не были знакомы ледяные кубики для охлаждения вина, поэтому попробуйте дать за него ответ на следующий вопрос: в кружке, наполненной до краев водой, плавает кубик льда. Что будет, когда он растает?
Ответ (21)
Все мы постоянно проделываем эксперименты, но чаще всего даже не осознаем этого. Мы наблюдаем за окружающим миром, а когда он ставит перед нами очередную проблему, подсознательно начинаем обращать больше внимания на те наблюдения, которые так или иначе с ней связаны. Вот вам еще одна проблема. В банковском сейфе имеется 30 ячеек, в каждой из которых хранится по 30 золотых монет. Поступила информация, что в одной из ячеек монеты фальшивые. Настоящая золотая монета весит 10 граммов, а фальшивая – только 9 граммов. Директору банка необходимо узнать, в какой именно ячейке находятся фальшивые деньги, но у него очень мало времени, так как ревизия уже на пороге. У него есть электронные весы, позволяющие взвешивать с точностью до 1 грамма, но времени хватает только на одно взвешивание. Каким же образом можно определить, в какой ячейке фальшивые монеты?
Ответ (22)
Процедуры взвешивания и измерения постоянно встречаются в задачах, потому что чисто математические действия в этом случае легче трансформировать в форму занимательной истории. Итак, еще одна классическая задача. Перед вами лежат двенадцать металлических шариков, которые на вид не отличаются друг от друга, но один из шариков тяжелее остальных. У вас есть обычные рычажные весы, и вы можете произвести только три взвешивания. Как найти более тяжелый шарик? Ладно, с этой задачей вы, вероятно, справились быстро. А теперь немного усложним условие. Перед вами все те же двенадцать шариков, но один из них либо легче, либо тяжелее других. У вас по-прежнему только три попытки.
Ответ (23)
Хуже, когда на весы нельзя полностью положиться. Допустим, вы хотите отмерить 2 килограмма сахара. У вас есть рычажные весы, но с разной длиной плеч, килограммовая гиря, несколько бумажных пакетов и большой мешок сахара. Как вы поступите?
Ответ (24)
Одна упаковка чая весит 75 граммов, но покупателю нужно только 55 граммов. У продавщицы есть рычажные весы, но нет необходимых мелких гирек. Единственное, чем она располагает, – это пакетик шафрана, весящий 25 граммов, и пакетик с сахаром весом 40 граммов. Есть ли у нее возможность взвесить 55 граммов чая?
Ответ (25)
Крестьяне в Тироле до сих взвешивают яблоки с помощью четырех камней различного веса и рычажных весов. Если разбить 40-килограммовый мельничный жернов на четыре части, с их помощью можно взвешивать любой предмет весом от 1 до 40 килограммов. Вопрос лишь в том, какого веса должны быть эти части жернова.
Ответ (26)
Раз уж вы так увлеклись взвешиванием, предложим вам последнюю задачу с рычажными весами. На обеих чашах весов стоят наполненные одинаковым количеством воды банки. В одну банку поставим розу. Вторую розу такого же веса положим поверх второй банки, чтобы она не касалась воды. Весы пока находятся в равновесии. Что с ними произойдет, когда вторая роза засохнет?
Ответ (27)
Вообще-то весы – символ уравнения. Все, что находится на их чашах, можно представить в виде чисел. Но символизировать различные числа могут также песочные часы или ведра с водой. Вот несколько примеров.
У вас есть двое песочных часов. В одних песок полностью пересыпается из верхней емкости в нижнюю за 7 минут, а в других – за 4 минуты. Можно ли с их помощью отмерить ровно девять минут?
Ответ (28)
У вас есть два ведра. Одно вмещает ровно 3 литра воды, а второе – 5 литров. Никаких отметок на них не имеется. Вы стоите у колонки с водой, и вам нужно отмерить ровно 4 литра. Как это сделать?
Ответ (29)
Необходимо заполнить водой цистерну. У вас есть четыре насоса различной мощности. Самый мощный может заполнить цистерну за 1 час, второй – за 2 часа, третий – за 3 часа, а четвертому для этого понадобится 6 часов. Поскольку работа срочная, вы одновременно включаете все насосы. Через какое время цистерна будет заполнена?
Ответ (30)
Возможно, нашей часто критикуемой школьной системе пошло бы на пользу, если бы она подключила к изучению математических формул логику и воображение учащихся. Подумайте сами, какая формула поможет нам решить следующую задачу: осенняя буря повредила флагшток высотой 9 метров. Он сломался в 4 метрах от земли. На каком расстоянии от основания касается земли кончик сломанного флагштока?
Читать дальше
Конец ознакомительного отрывка
Купить книгу